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Abstract

The effects of smoothing non-smooth function on estimation of dynamical stability of the periodic
response determined in the frequency domain are considered in this paper. For that purpose, a simple
single-degree-of-freedom system with piecewise-linear force–displacement relationship subjected to a
harmonic force excitation is analyzed. Stability of the periodic response obtained in the frequency domain
by the incremental harmonic balance method is determined by using the Floquet–Liapounov theorem.
Results obtained are verified in the time domain by the method of piecing the exact solutions and
Runge–Kutta integration routine.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Among the great number of various types of non-linear dynamic systems, a very specific group
constitutes non-linear systems described by differential equations which contain discontinuous,
i.e., non-smooth restoring or damping force characteristic. Such non-linear systems (for example
systems with clearance, Coulomb damper, impacting oscillators, etc.) can be easily described in
piecewise manner, i.e., by using piecewise-linear or piecewise non-linear functions. Due to such
piecewise representation of non-linear (non-smooth) functions, the governing equations cannot be
expressed in closed form and many analytical algorithms based on a local power-series
representation of a non-linear function cannot be applied to these equations. Responses (both
periodic and aperiodic) of the systems with non-smooth non-linearities can be relatively easily
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determined in the time domain by using digital simulation. But procedures of that kind can be
exceptionally time consuming, particularly inside the frequency ranges of co-existence of multiple
stable solutions (where many combinations of initial conditions have to be examined for obtaining
all possible steady-state solutions) and for lightly damped systems, since a great number of
excitation periods must be simulated to obtain a steady-state response. Very efficient methods for
solving this type of non-linear differential equations in the frequency domain are multi-harmonic
balance methods [1–8]. These methods become exceptionally efficient in combination with path
following techniques [9–11] and can be successfully applied to a wide range of non-linear
problems. They are very well suited for parametric analysis and bifurcation analysis. Nevertheless,
the time and effort needed for analyzing smooth non-linear systems are very often considerably
shorter and smaller than for analyzing corresponding non-smooth ones [12,13]. Because of that it
could be advantageous to approximate original non-smooth function by a corresponding
smoothed one. This could be especially important in bifurcation analysis [9], and for analysis of
systems which exhibit chaotic responses [12]. Systems with clearance and Coulomb damper
described in piecewise-linear manner and corresponding systems described by smoothed functions
(by hyperbolic tangent and sigmoid functions) are considered by Lok and Wiercigroch [12],
Wiercigroch and Sin [14], and Wiercigroch [13]. A very good agreement of the time-domain
responses obtained for discontinuous and smoothed systems was achieved, even for the cases of
chaotic responses (for certain ranges of parameters). Narayanan and Sekar [9] presented a path
following an algorithm based on a predictor-corrector method which enables the bifurcation
analysis. It is known that applying that method to discontinuous systems can cause considerable
difficulties, and in that case the authors recommend replacing the non-smooth function by
corresponding smoothed one. Moreover it is also observed [15,16] that even neglecting the very
small harmonic terms of a response, which do not significantly influence the root mean square
(r.m.s.) and are small in comparison to other terms of the spectrum, can lead to incorrect
prediction of dynamical stability of the solution, i.e., that estimation of dynamical stability could
be an extremely sensitive procedure. Accordingly, it could seem reasonable to examine the effects
of smoothing non-smooth function on estimation of dynamical stability of the periodic solution.
For that purpose, a simple single-degree-of-freedom piecewise-linear system subjected to a
harmonic force excitation is analyzed in this paper. In the frequency domain, periodic solutions
are obtained by the incremental harmonic balance method (IHBM). Their stability is estimated by
the Floquet–Liapounov theorem [17,18]. The results obtained are verified in the time domain by
the method of piecing the exact solutions (MPES) and by Runge–Kutta fourth and fifth order
numerical integration routines.

2. Model of a mechanical system with a clearance

Model of a simple mechanical system with clearance is shown in Fig. 1. It consists of an inertia
element m; a linear viscous damper c; and a non-linear elastic element kgðxÞ: The non-linear elastic
element is defined by a piecewise-linear function gðxÞ and a coefficient k: The piecewise-linear
function gðxÞ and its derivative are shown in Fig. 2. b denotes one-half of the clearance space.
When the system is excited by a periodic harmonic force F ðtÞ; the motion of the system can be
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described by the non-linear differential equation

m
d2x

dt2
þ c

dx

dt
þ kgðxÞ ¼ F ðtÞ ¼ f0 þ fC cosðOtÞ þ fS sinðOtÞ; ð1Þ

where f0 represents mean transmitted force, fC and fS are force component amplitudes of the
corresponding harmonic terms, and O is the excitation frequency. Since the procedure of
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Fig. 1. Model of vibration system.
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Fig. 2. Non-linear function gðxÞ (a) and its derivative (b).
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prediction of the dynamical stability is based on derivative of a non-linear function, expressions
for non-linear functions and their derivatives are given. For original piecewise-linear function

g1ðxÞ ¼ h�ðx � b�Þ; ð2Þ

@g1ðxÞ
@x

¼ h�; ð3Þ

where

h� ¼

1; box

0; �bpxpb

1; xo� b

8><
>:

9>=
>;; b� ¼

b; box

0; �bpxpb

�b; xo� b

8><
>:

9>=
>;: ð4Þ

For hyperbolic tangent smoothing function

g2ðxÞ ¼ 1
2
½2x þ ðx þ bÞ tanhð�hðx þ bÞÞ þ ðx � bÞ tanhðhðx � bÞÞ�; ð5Þ

@g2ðxÞ
@x

¼
1

2
2þ tanhð�hðx þ bÞÞ þ tanhðhðx � bÞÞ �

hðx þ bÞ

cosh2ð�hðx þ bÞÞ
þ

hðx � bÞ

cosh2ðhðx � bÞÞ

� 	
ð6Þ

and for sigmoid smoothing function

g3ðxÞ ¼
ðx þ bÞ

1þ eaðbþxÞ þ
ðx � bÞ

1þ eaðb�xÞ; ð7Þ

@g3ðxÞ
@x

¼
1þ eaðbþxÞð1� aðx þ bÞÞ

ð1þ eaðbþxÞÞ2
þ
1þ eaðb�xÞð1þ aðx � bÞÞ

ð1þ eaðb�xÞÞ2
; ð8Þ

where h and a are control parameters in Eqs. (5)–(8). The accuracy of the approximation increases
with increasing h and a: The hyperbolic tangent smoothing approximation g2ðxÞ and its derivative
@g2ðxÞ=@x is shown in Fig. 3 for certain values of h: From Figs. 2a and 3a, one can see that
piecewise-linear and hyperbolic tangent functions exhibit a very good agreement for large values
of the control parameter h: Figs. 2b and 3b show that the maximum value of disagreement
between @g1ðxÞ=@x (i.e. @gðxÞ=@x) and @g2ðxÞ=@x is unchanged irrespective of the increase of h:
Increasing of h causes only decreasing of the width of their significant disagreement region. The
same situation holds for sigmoid smoothing function g3ðxÞ also. But, in the case of sigmoid
smoothing function, magnitudes of numerator and denominator of (8) can be extremely large for
large values of a: For example, values aX240 and xX2 cause overflow. Therefore, only the
approximation of piecewise-linear function g1ðxÞ by hyperbolic tangent smoothing function g2ðxÞ
is used in this paper. Extensive analysis of similar systems is performed by Lok and Wiercigroch
[12], Wiercigroch and Sin [14] and Wiercigroch [13].
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3. Short description of the applied methods

3.1. Incremental harmonic balance method (IHBM)

By introducing a non-dimensional time y as a new independent variable, the differential
equation (1) can be rewritten in the non-dimensional form

Z2

n2
d2 %x

dy2
þ
2zZ
n

d %x

dy
þ gð %xÞ ¼ %f0 þ %fC cosðnyÞ þ %fS sinðnyÞ; ð9Þ

where

%x ¼
x

l
; %b ¼

b

l
; o0 ¼

ffiffiffiffi
k

m

r
; z ¼

c

2mo0
; %fC ¼

fC

mlo2
0

; %fS ¼
fS

mlo2
0

;

Z ¼
O
o0

; t ¼ o0t; Ot ¼ Zt ¼ ny:
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Fig. 3. Hyperbolic tangent smoothing function (a) and its derivative (b) for b ¼ 1 and different values of h:
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In this way, the period of the response (with n subharmonics taken in consideration) is always
2p; making it possible (by using the IHBM) to consider any number of superharmonics and
subharmonics included in the supposed approximate solution. Any characteristic dimension of the
system is denoted by l here.
Supposed approximate solution is given by

%x ¼
XN

i¼0

ai cos iyþ bi sin iy ¼ ½T�fag; ð10Þ

where

½T� ¼ ½1; cos y; cos 2y; :::; cosNy; sin y; sin 2y; :::; sinNy�;

fag ¼ ½a0; a1; :::; aN ; b1; b2; :::; bN �T:

N ¼ n K represents the number of all harmonics included in the supposed solution, n is
the number of subharmonics and K is the number of superharmonics. By applying this method,
which consists of two basic steps: incrementation and Galerkin’s procedure, the non-linear
differential equation (9) is transformed into the system of 2N þ 1 linearized incremental algebraic
equations

½k�j fDagjþ1 ¼ frgj; ð11Þ

fagjþ1 ¼ fajg þ fDagjþ1; ð12Þ

with Fourier coefficients (a0; ai; bi; i ¼ 1; ::: ;N) as unknowns. In Eqs. (11) and (12) j is
number of iterations. In each incremental step, only linear (i.e., linearized) algebraic equations
have to be formed and solved. The comprehensive description of the method, its application to
piecewise-linear systems and the way of determining elements of Jacobian matrix ½k� and the
corrector frg in explicit form is given by Wong et al. [4]. In the case of hyperbolic tangent or
sigmoid smoothing approximation of a piecewise-linear function, some elements of ½k� and frg can
be determined only by numerical integration.

3.2. The method of piecing exact solutions (MPES)

The force–displacement relationship gðxÞ (Fig. 2a) is piecewise linear. Local solutions of the
differential equations (1) are known explicitly inside each of the stage stiffness, and can be
repeatedly matched at x ¼ b and �b, to obtain a global solution of (1). Piecing together of these
local solutions is not directly possible, because the times of flight in each stage stiffness region
cannot be found in a closed form. But the matching of local solutions can be numerically done
very easily. The only approximation made by applying this procedure is in the precision of
numerical determination of the times in which the system changes stiffness region (x ¼ b; �b). The
comprehensive description of the method is given in Refs. [19,16].
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4. The stability of the steady-state solution

When the periodic solution is obtained, the stability of the given solution can be determined by
examining the perturbed solution %x�:

%x� ¼ %x þ D %x�; ð13Þ

where D %x� is a small perturbation of a periodic solution %x: By substitution of Eq. (13) in (9), and
after expanding non-linear function gð %xÞ in a Taylor’s series about the periodic solution with
neglecting non-linear incremental terms, one obtains linear homogeneous differential equation
with time changing periodic coefficients @gð %xÞ=@ %x:

Z2

n2
d2D %x�

dy2
þ
2zZ
n

dD %x�

dy
þ
@gð %xÞ
@ %x

D %x� ¼ 0: ð14Þ

When the steady-state solution %xðyÞ is determined, the values of @gð %xÞ=@ %x are known inside a
period of the response. A very efficient and very often used method for determining the stability of
the periodic solution is based on the Floquet–Liapounov theorem [17,18]. For that purpose
Eq. (14) can be rewritten in the state variable form as

d %X
�

dy

( )
¼ ½AðyÞ�f %X�g; ð15Þ

where

f %X�g ¼
D %x�

dD %x�=dy

� �
;

d %X
�

dy

( )
¼

dD %x�=dy

d2D %x�=dy2

( )
; ½AðyÞ� ¼

0 1

�
n2

Z2
@gð %xÞ
@ %x

� �
�
2nz
Z

2
64

3
75: ð16Þ

Since the matrix ½AðyÞ� is a periodic function of y with the period 2p; the stability criteria are
related to the eigenvalues of the monodromy matrix which is defined as the state transition matrix
at the end of one period. According to the Floquet–Liapounov theorem, the solution is stable if all
the moduli of the eigenvalues of the monodromy matrix are less than unity. Otherwise the
solution is unstable. Generally, it is not possible to derive an analytic expression for the transition
matrix. But, if the non-linear force–displacement relationship is piecewise linear, its derivative
ð@g1ðxÞ=@x ¼ h�Þ is, according to (4), constant inside each of the intervals ½yi; yiþ1� (Fig. 4).
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Consequently, ½Aðyi; yiþ1Þ� is also a constant matrix inside that interval. According to D’Souza
and Garg [20], for the constant ½Aðyi; yiþ1Þ� (inside the interval ½yi; yiþ1�), transition matrix
½Uðyiþ1; yiÞ� can be expressed as

½Uðyiþ1; yiÞ� ¼ e½Aðyi ;yiþ1Þ� ðyiþ1�yiÞ ð17Þ

and for the whole interval ½0; 2p� according to Wong et al. [4] one obtains

½Uð2p; 0Þ� ¼
YL

i¼0

e½Aðyi ;yiþ1Þ�ðyiþ1�yiÞ: ð18Þ

Besides the accuracy of numerical determination of times yi in which the system changes stage
stiffness region ( %x ¼ %b; � %b), the only approximation occurring in this procedure is the accuracy of
computation of the matrix exponential e½AðyÞ�ðyiþ1�yiÞ and the product of matrix exponentialsQL

i¼0 e
½Aðyi ;yiþ1Þ� ðyiþ1�yiÞ: The accuracy of determination of yi is arbitrary, i.e., it depends only on

numerical precision of the computer used. To evaluate the matrix exponential and the product of
matrix exponentials as accurately as possible, the algorithms recommended by Cardona et al. [10]
are used in this paper. If a non-linear force–displacement relationship gðxÞ is approximated by a
continuous non-linear function, its derivative is a time changing function, and, consequently,
½AðyÞ� is then a time-changing matrix. So, the monodromy matrix cannot be obtained in the
previously described way, i.e., by using (17) and (18). Among various methods of approximating
monodromy matrix, Friedman et al. [21] concluded that the most efficient procedure is one
proposed by Hsu and Cheng [22], i.e., to approximate the periodic matrix ½AðyÞ� by a series of step
functions. For that purpose a period of the response (2p) is divided into M equal intervals
Dy ¼ 2p=M: Inside each of the intervals, the time changing matrix ½AðyÞ� is replaced by its average
value, i.e., by a constant matrix ½Aj�; j ¼ 1; 2; ::: ; M:
For the jth interval, the transition matrix can be expressed as

½Uj� ¼ e½Aj �Dy ð19Þ

and for the whole period of the response ½0; 2p� as

Uð2p; 0Þ½ � ¼
YM
j¼1

e½Aj �Dy: ð20Þ

For numerical evaluation of (19) and (20), the algorithms recommended by Cardona et al. [10]
are used, i.e., the same ones as for the evaluation of (17) and (18).

5. Results

Comparison of the responses of vibration system described by %b ¼ 1; z ¼ 0:03; with excitation
parameters %f0 ¼ 0:25; %fC ¼ 0:25; %fS ¼ 0 at Z ¼ 0:147; obtained for the original piecewise-linear
function g1ð %xÞ and its hyperbolic tangent smoothing approximation g2ð %xÞ for the control
parameter h ¼ 50 is shown in Fig. 5a. Fig. 5b shows difference of this two responses

%xdiff ¼ %xg1 � %xg2; ð21Þ
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where %xg1 denotes the response obtained by original piecewise-linear function g1ð %xÞ and %xg2

denotes the response obtained by hyperbolic tangent smoothing function g2ð %xÞ for h=50. One can
see an expected very good agreement of the obtained responses. Fig. 6 shows results of dynamical
stability estimation depending on control parameter h and the number M of equal intervals Dy
(inside which the time changing matrix ½AðyÞ� is replaced by a constant matrix ½Aj�
(j ¼ 1; 2; ::: ; M)). ‘‘
’’ denotes solutions that are estimated as stable, and blank space denotes
solutions that are estimated as unstable. For the system considered, the frequency-domain
response should be estimated as stable because the corresponding periodic solution is obtained
also in the time-domain (for piecewise-linear function by MPES and for hyperbolic tangent
smoothing function by Runge–Kutta fourth and fifth order numerical integration routine). Fig. 6
shows that estimation of dynamical stability depends both on control parameter h and the number
M of intervals Dy: ‘‘of ’’ denotes results of stability estimation depending on M when stability of
the response of original piecewise-linear system is estimated by using (19) and (20) instead (17)
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and (18), i.e., when the procedure for continuous function is applied to original piecewise-linear
function. One can see excellent agreement of these results and the results obtained by using
hyperbolic tangent smoothing function g2ð %xÞ for h ¼ 1000: This implies that if h is large enough,
estimation of dynamical stability depends more upon the number of intervals Dy than upon the
control parameter h: The next example refers to a response of the same vibration system, but at
Z ¼ 0:50086: One of eigenvalues of monodromy matrix obtained for the original piecewise-linear
function (obtained by using (17) and (18)) is very close to unity (jlmaxj ¼ 0:9998), i.e., the system is
near a bifurcation. Fig. 7 shows dependence of stability estimation on the control parameter h and
the number M of intervals Dy: It differs from the results obtained for Z ¼ 0:147 (jlmaxj ¼ 0:2774)
shown in Fig. 6, for Z ¼ 0:50086 increasing of both h and M does not increase frequency of
appearing stable solutions. Fig. 7c shows the dependence of dynamical stability inside the region
10php1 000 000; 500pMp30 000: It is very interesting that incorrect estimations occur even for
cases h ¼ 1 000 000 and MX25 000; as well as in the case when the procedure for continuous
function is applied to original piecewise-linear function (results denoted by ‘‘of ’’). One could
suspect that incorrect estimations of dynamical stability are not caused by insufficient number of
intervals Dy but by numerical inaccuracy of evaluation of monodromy matrix (Section 4). To
examine what is the source of such incorrect stability estimations (the algorithm of evaluating
monodromy matrix or insufficient number of intervals Dy), the stability of the system with
original piecewise-linear function is analyzed by (17) and (18). For that purpose, the precision of
determining times yi in which the system changes stage stiffness region is varied. This procedure
causes similar effect as varying the number M of intervals Dy: Here the ‘‘equivalent number of
intervals Mekv’’ corresponds to the number of intervals Dy needed for making the width of the
interval Dy to be equal as the specified largest error e; permitted in the procedure of determining
times yi; i.e., Mekv ¼ 2p=e ¼ 2p=Dy: Fig. 8 shows stability estimation results inside regions
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2p
 103pMekvp2p
 108 (emax ¼ 10�3; emin ¼ 10�8), with an increment DMekv ¼ 2p
 105 and
2p
 102pMekvp2p
 105 (emax ¼ 10�2; emin ¼ 10�5) with an increment DMekv ¼ 2p
 102: These
results show that incorrect stability estimation (Fig. 7c) is caused by insufficient number of
intervals Dy; i.e., that near a bifurcation the procedure of determining monodromy matrix can be
very sensitive to numerical accuracy of determining yi; and in this way, on the number of intervals
Dy: One could also conclude that incorrect prediction of the dynamical stability of the solution is
caused not as much by smoothing itself (in the case of sufficiently large values of smoothing
control parameter), but by sensitivity of the procedure of evaluation of monodromy matrix of
non-linear systems with discontinuous (or rapidly changing) first derivative of the force–
displacement relationship. It is worth emphasizing that these effects could be especially important
in bifurcation analysis. On the other hand, one’s attention should be directed to another effect
[15,16], which in contrast to the previously described ones, very significantly influences
determination of dynamical stability, regardless whether the system is near a bifurcation or
not. Fig. 9 shows a spectrum of the time-domain response of the considered system with
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piecewise-linear force–displacement relationship (obtained by MPES) for Z ¼ 0:147: Fig. 10 shows
the dependence of effective amplitude %xp (obtained by IHBM) and maximum modulus of the
eigenvalues of the corresponding monodromy matrix jlmaxj; on the number of harmonics N
included in the supposed approximate solution. One can see (Fig. 10) that even neglecting very
small harmonic terms in the actual time-domain response (11th harmonic in the spectrum whose
amplitude is 2.8% of the amplitude of the first harmonic) causes significant error in determination
of the eigenvalues of the monodromy matrix. Similar situation is shown in Figs. 11 and 12 for
Z ¼ 0:5243: In this case, neglecting the 20th harmonic in the spectrum, whose amplitude is only
0.015% of the amplitude of the largest (second) harmonic, causes an incorrect prediction of the
dynamical stability of the solution.

6. Conclusion

The influence of smoothing non-smooth functions on estimation of dynamical stability of the
periodic response determined in the frequency domain is considered in this paper. For that
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purpose, a simple single-degree-of-freedom system with piecewise-linear force–displacement
relationship subjected to a harmonic force excitation is analyzed. The considerable advantage of
using this piecewise-linear model is in the possibility of expressing monodromy matrix exactly as a
product of matrix exponentials, which is not possible for a general non-linear function. In this
way, the inaccuracy of evaluating monodromy matrix can be caused only by insufficient precision
of numerical determination of the times in which the system changes stage stiffness region, and by
numerical procedures of evaluation matrix exponential and product of matrix exponentials. Based
upon the obtained results one can conclude that incorrect prediction of dynamical stability of the
response of the systems with smoothed function is caused not as much by smoothing itself (if a
smoothing control parameter is sufficiently large) but by sensitiveness of the procedure of
evaluation of the monodromy matrix. If the system is close to a bifurcation, the stability
estimation can be an extremely sensitive procedure and large values of smoothing functions
control parameter are required, as well as a very large number of step functions used in
approximate determining of the monodromy matrix by Hsu’s procedure. In that case, the required
large smoothing function control parameter can lead to overflow if sigmoid smoothing function is
used, and hyperbolic tangent smoothing function is estimated as a better solution than sigmoid
smoothing function. It is also shown that even neglecting very small harmonic terms of actual
time-domain response (which in-significantly influence the r.m.s values of the response and are
small in comparison to other terms of the spectrum) can cause a very large error in evaluation of
the eigenvalues of the monodromy matrix, and can lead to incorrect prediction of the dynamical
stability of the solution, regardless of whether the system is close to a bifurcation or not. These
results are interesting not only in the case of smoothing a non-smooth function, but also whenever
the stability of the periodic response of systems with discontinuous (or with rapidly changing) first
derivative of the force–displacement relationship is estimated by Floquet–Liapounov theorem.
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